首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63346篇
  免费   6445篇
  国内免费   4216篇
电工技术   1451篇
综合类   5708篇
化学工业   14957篇
金属工艺   6580篇
机械仪表   3765篇
建筑科学   6551篇
矿业工程   2900篇
能源动力   4336篇
轻工业   4740篇
水利工程   2052篇
石油天然气   3811篇
武器工业   591篇
无线电   2037篇
一般工业技术   8795篇
冶金工业   3614篇
原子能技术   905篇
自动化技术   1214篇
  2024年   115篇
  2023年   1262篇
  2022年   1871篇
  2021年   2724篇
  2020年   2365篇
  2019年   2232篇
  2018年   2012篇
  2017年   2309篇
  2016年   2327篇
  2015年   2288篇
  2014年   3406篇
  2013年   3880篇
  2012年   4067篇
  2011年   4506篇
  2010年   3416篇
  2009年   3560篇
  2008年   3268篇
  2007年   4007篇
  2006年   3538篇
  2005年   3058篇
  2004年   2673篇
  2003年   2308篇
  2002年   2005篇
  2001年   1733篇
  2000年   1508篇
  1999年   1250篇
  1998年   1026篇
  1997年   883篇
  1996年   786篇
  1995年   674篇
  1994年   605篇
  1993年   473篇
  1992年   396篇
  1991年   277篇
  1990年   248篇
  1989年   213篇
  1988年   145篇
  1987年   116篇
  1986年   61篇
  1985年   61篇
  1984年   70篇
  1983年   31篇
  1982年   40篇
  1981年   14篇
  1980年   25篇
  1979年   23篇
  1964年   17篇
  1957年   13篇
  1955年   19篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Surface reconstruction produces metal oxyhydroxide (1OOH) active sites, and promoting surface reconstruction is essential for the design of OER electrocatalysts. In this paper, we reported that a large amount of active NiFeOOH was generated in-situ on the surface of nickel-iron sulfide selenide, thus exposing more active sites and efficiently catalyzing OER. In 1 M KOH solution, NiFeOOH(S,Se) achieves an ultra-low overpotential of 195 mV at the current density of 10 mA cm?2, and the Tafel slope is only 31.99 mV dec?1, showing excellent catalytic performance. When the current density is 100  mA cm?2, the over-potential of NiFeOOH(S,Se) in KOH + seawater solution is 239 mV, which is almost equivalent to 231 mV in KOH solution. The excellent OER stability of the NiFeOOH(S,Se) catalyst in alkaline electrolytes was confirmed, and the overpotential did not change significantly after 4 days of testing in KOH + seawater solution.  相似文献   
52.
Transition metal-based electrocatalysts supported on carbon substrates face the challenges of anodic corrosion of carbon during oxygen evolution reaction at high oxidation potential. The role of electrophilic functional groups (carbonyl, pyridinic, thiol, etc.) incorporated in graphene oxide has been studied towards the anodic corrosion resistance. Heteroatom functionalized carbon supports possess modified electronic properties, surface oxygen content, and hydrophilicity, which are crucial in governing electrochemical corrosion in the alkaline oxidative environment. Evidently, electron-withdrawing groups in NGO support (pyridinic, cyano, nitro, etc) and its lower oxygen content impart maximum corrosion resistance and anodic stability in comparison to the other sulfur-doped and co-doped graphene oxide support. In this report, we establish the baseline evaluation of carbon-supported OER electrocatalysts by a systematic analysis of activity and substrate corrosion resistance. The result of this study establishes the role of surface composition of the doped supports while for designing a stable, corrosion-resistant OER electrocatalyst.  相似文献   
53.
54.
Developing inexpensive and efficient electrocatalysts for hydrogen evolution reaction (HER) in both acidic and alkaline mediums is of great significance to the hydrogen energy industry. Hereby, we prepared a mixture of precursors with homogeneous composition by using the chelating ability of soybean protein isolate (C and N source) and phytic acid (dopant and phosphating agent) with cobalt ions, and achieved one-step synthesis and construction of Co2P/N–P co-doped porous carbon composite by carbonization at 800 °C. The as-synthesized Co2P/NPPC-800 electrocatalyst exhibits low HER overpotentials of 121 and 125 mV at 10 mA cm?2 in 0.5 M H2SO4 and 1.0 M KOH, which are close to those of the commercial Pt/C catalyst. Additionally, the NPPC substrate surrounding the Co2P could diminish the corrosion during the HER, and Co2P/NPPC-800 displays good stability and durability. Furthermore, this work offers a convenient synthesis strategy for phosphide/doped porous carbon composites in other electrochemical energy technologies.  相似文献   
55.
Electrocatalytic reduction of N2 to NH3 under ambient conditions, inspired by biological nitrogen fixation, is a new approach to address the current energy shortage crisis. As a result, developing efficient and low-cost catalysts is critical. The catalytic activity, catalytic mechanism, and selectivity of α-arsenene (α-Ars) catalysts anchored with various transition metal atoms and doped with different numbers of N atom were investigated for N2 reduction reaction (NRR) in this paper. Results reveal that compared with WN3-α-Ars which is coordinated with three N atoms, asym-WN2As-α-Ars that coordinated with two N atoms not only exhibits high catalytic activity (UL = ?0.36 V), but can also successfully suppress the hydrogen evolution reaction (HER). It is manifested that reducing the number of coordination atoms can promote the selectivity of the transition metal (TM) loaded N-doped arsenene catalysts. Furthermore, activity origin analyses show both the charge on 1N–NH and φ form volcano-type relationship with the limiting potential. The active center of the catalyst, which acts as the charge transporter and has the moderate ability to retrieve charges, is the most efficient in NRR. Overall, this research creates high performance NRR catalysts by varying the number of coordinating N atoms, which provides a novel idea for the development of new NRR catalysts.  相似文献   
56.
Metal-organic frameworks (MOFs) have emerged as efficient electrocatalysts due to the features of high specific surface area, rich pore structure and diversified composition. It is still challenging to synthesize self-supporting MOF-based catalysts using simple and low-cost fabrication methods. Herein, we successfully fabricated Ni-doped MIL-53(Fe) supported on nickel-iron foam (Ni-MIL-53(Fe)/NFF) as efficient electrocatalyst. A facile two-step solvothermal method without adding any metal salts was used, which can simplify the fabrication process and reduce the experimental cost. In the fabrication process, the bimetallic Ni-MIL-53(Fe)/NFF was in situ converted from an intermediate NiFe2O4/NFF. The obtained material exhibits outstanding electrocatalytic oxygen evolution performance with a low overpotential of 248 mV at 50 mA cm?2, and a small Tafel slope of 46.4 mV dec?1. This work sheds light on the simple and efficient preparation of bimetallic MOF-based material, which is promising in electrocatalysts.  相似文献   
57.
Developing highly efficient and stable noble metal-free electrocatalysts with excellent catalytic surface for oxygen evolution reactions (OER) is an essential link for stimulating hydrogen generation from water electrolysis. Herein, the scalloped nickel/iron vanadium oxide coated vanadium dioxide (named as VO2@NFVO) has been successfully decorated via a urea-induced chemical etching-reconstruction process in the alkaline solution containing Fe2+ and Ni2+. Corresponding experimental measurements clearly show that favorable chemical etching occurs with the formation of new phases (eg, Ni3V2O8, FeVO4), which make it expose a large number of active sites and regulate the electron density of the active center, thus thereby dramatically enhancing the electrocatalytic performance by promoting electron transfer and optimizing the adsorption energy of reaction intermediates. Under optimized condition, the obtained VO2@NFVO delivers excellent activity merely with smaller overpotential of 290 mV at 10 mA cm?2, outperforming benchmark RuO2 catalyst in an alkaline solution. Moreover, its superior durability is verified by chronoamperometry testing. This simple etching-reconstruction strategy opens a new avenue for the preparation of vanadium-based electrocatalysts.  相似文献   
58.
Searching high-active, stable and abundant bifunctional catalysts to replace noble metals for hydrogen and oxygen evolution reactions (HER and OER) is desired. Herein, petal-like NiCoP sheets were synthesized on carbon paper covered with a 3D nitrogen-doped carbon nanofiber network (NiCoP/CNNCP) by a simple hydrothermal process followed by phosphorization. The HER overpotential in 0.5 M H2SO4 and OER overpotential in 1 M KOH of the NiCoP/CNNCP electrode only required 55 mV and 260 mV to drive a current density of 10 mA cm?2, respectively, which was comparable or even better than most nickel-and cobalt-based phosphide catalysts. The overall water-splitting electrolyzer with an asymmetric electrolyte system assembled using NiCoP/CNNCP as bifunctional electrodes required an extremely low cell voltage of 1.04 V to achieve a current density of 10 mA cm?2, which was much lower than almost all alkaline electrolysis systems.  相似文献   
59.
Minimizing entropy generation is a technique that helps improve the effectiveness of real processes by studying the associated irreversibility of system performance of nanofluid. This study examines the entropy generation analysis of electromagnetohydrodynamic radiative Casson flow induced by a stretching Riga plate in a non-Darcian porous medium under the influence of internal energy change, Arrhenius activation energy, chemical reaction, and melting heat transfer. The thermophysical features of the fluid are assumed constant in most of the literature. However, this current research bridges this gap by considering viscosity, conductivity, and diffusivity as temperature-dependent variables. Also, the exponential decaying Grinberg term is used as a resistive force in this investigation due to the electromagnetic properties of the Riga plate in the momentum conservation equation. Some suitable dimensionless variables are introduced to remodel the transport equations into unitless ones and then solved numerically by employing Galerkin Weighted Residual Method. Analyses reveal that the Casson parameter declines the fluid velocity, while the existence of the melting parameter has the opposite effect. Also, this article includes some future recommendations.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号